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Abstract

Hamiltonians for a particle on a manifold in a magnetic field are constructed as
Bochner-Laplacians. We show for the case of a torus and a given magnetic
field that they are in one to one correspondence with the constituents in the
Bloch decomposition of the unique Hamiltonian on the universal covering.

Introduction

We consider a Schrödinger Hamiltonian on a Riemannian manifold with
magnetic field and its relation to the corresponding Hamiltonian on the
universal covering manifold. This problem is motivated by and our results may
be useful for some questions around models for the Quantum-Hall-Effect
[TKNN], [A-S-Y], [A-K-P-S]. We review first the well known geometrical
construction of the Hilbert space of quantum mechanical states and the Hamil-
tonian of the system for magnetic fields with integral flux. In this setting the
Hilbert space consists of  L2-sections in a hermitian line bundle with con-
nection over the manifold of configurations;  curvature of the connection is the
magnetic field, and dynamics is generated by the Bochner-Laplacian. The con-
struction is not unique if the manifold is not simply connected. The family of
hermitian line bundles with connection (Hilbert spaces and Hamiltonians) is
parametrized by Aharonov-Bohm like fluxes through the "holes" of the
manifold, mathematically: by certain cohomology groups.

This geometric description is known. It has been used by physicists since it
was pointed out by Wu and Yang [W-Y] who worked out the case of the
sphere (the Dirac monopole). Our aim here is to emphasize the aspect of non-
uniqueness which is much less discussed in the physics literature. We use
explicitly methods of differential and algebraic geometry  and to relate the non-
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uniqueness to the Bloch decomposition of the corresponding setting on the
covering space. This program is worked out in detail for the case of the two
dimensional torus. In particular we show that the Bloch decomposition of the
Hilbert space of a particle moving in the two plane leads to a Hilbert bundle
over the Brillouin zone (or in more general terms: the Jacobi torus), whose
fibre operators are in one to one correspondence with the family of Bochner
Laplacians arising in the geometrical construction. Geometrically speaking we
show that the summation over all non-equivalent Hamiltonians on the torus
gives the Hamiltonian on its universal  cover.

Quantization of a particle on a Riemannian manifold in the presence of a
magnetic field is technically prequantization in the terminology of "Geometric
Quantization" [K], [Wo]. In this context it is a known technique to start the
quantization procedure on the covering space and then to "push it down" to the
original manifold. This method has recently been used in [AdPW] for
quantization of Chern-Simons Gauge Theory. It might be useful to comment
on some similarities and differences between our article and the one just
mentioned. Here we start with a Riemannian manifold with integral two form b
and classify first all possible hermitian line bundles with connection and
curvature b (Theorem 2). After that all compatible connections for a given
hermitian line bundle with curvature b are classified (Theorem 3).  In the
article of Axelrod et al. the prequantum line bundle is given at the outset and
quantization is discussed in terms of all possible complex structures. Here the
manifold is configuration space. There it is phase space.

Integrality conditions for integrated curvature (magnetic fields) have a long
history. In the physics literature it starts with Dirac´s article [D]; in mathe-
matics it appears in our context in [W] and goes back to the Gauss Bonnet
theorem. Extensions of Dirac Quantization to Yang-Mills and Wess-Zumino
models using modern concepts are presented in [A]. Bochner Laplacians on
manifolds are of course the object of many articles. Let us just mention the
recent [Ku] where the spectrum is related to the closed orbits of the
corresponding classical dynamics.

The paper is organized as follows: in section 1 we recall the geometric descrip-
tion of the Quantum mechanics; section 2 contains the explicit calculation for
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the torus example; in section 3 the Bloch analysis for periodic magnetic fields
is carried out.

1. Quantum Mechanics on a manifold with magnetic field

We recall the well known geometric method for constructing the Hilbert space
and the Hamiltonian of a system under the influence of a magnetic field. Let
the configuration space be an oriented Riemannian manifold M and the
magnetic field be given by a closed real two form  b  on  M.

If  b = da the Hamiltonian is formally given by  (d-ia)*(d-ia). This always
works locally. The use of local gauge transformations allows to globalize the
construction if  b  is not exact:

Take a cover  {Uj}  of  M  such that there exist real one forms  aj  on  Uj  and
functions  fjk  on  Uj ↔ Uk  with  b = daj  on  Uj, aj - ak = dfjk  on  Uj ↔ Uk.
Wavefunctions ϕj ,ϕk  are gauge transformed in  Uj ↔ Uk  by  cjk := exp(ifjk)
i.e.: ϕj = cjkϕk. This is sensible if the cocycle conditions  cjkckl = cj l  can be
satisfied on Uj ↔ Uk ↔ Ul.

The geometrical object which formalizes this idea is a hermitian line bundle
with connection whose curvature is b  [W-Y]. The questions of existence and
uniqueness were studied by [S], [W], [K] and imply quantization conditions on
the physical system. Let us fix notation.

In the following all mappings and all manifolds are supposed to be infinitely
differentiable. Let  M be a manifold and  π : b ∅ M  a vector bundle with fibre
C; TC M (TC

*
 M ) the complexified (dual) tangent bundle of  M; S(b) the

C∞(M, C)  module of sections.

If there is a hermitian structure < · , · > on b and a compatible connection ∇,
(b, ∇, < · , ·>) is called hermitian line bundle with connection (HLBC).
Two HLBsC  (b, ∇, < · , ·>), (b', ∇', < · , ·>')  with the same base M  are called
equivalent if there exists a diffeomorphism  h:  b ∅ b'  with  π'h  = π  such that for
m ∈ M the induced mappings  hm :  π -1(m) ∅ π -1(m)  are linear isomorphisms,
∇'X  h  ̊ s  = h  ̊ ∇X s  (X ∈ S(TCM), s ∈ S(b)) and for b ∈ b: <h(b), h(b)> = <b,
b>.
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Two connections  ∇, ∇' on a HLB  (b, < · , ·>) are called equivalent if (b, ∇, < · , ·>)
is equivalent to (b, ∇', < · , ·>) .
The curvature b of ∇ is the two form  b(X, Y)s : = i(∇X ∇Y  − ∇Y∇X − ∇[X,Y] )s,
(Y, X ∈ S(TCM), s ∈ S(b)).

b is called integral if b/2π is equivalent to an element of the cohomology with
integer coefficients; for compact M this is the case iff the integral of
b/2π over a  singular 2- cycle has an integer value. For such a field it is
possible to construct a HLBC over  M  whose curvature is  b:

Theorem 1. Consider a manifold M and a two form b on M. A HLBC
with curvature  b  exists iff  b  is  real, closed, and integral .

Proof. The cohomology theories of Čech and de Rham and their equiva-
lence are used; the reader might consult [W], [G], [B-T] for this machinery,
[W], [K], [Wo] for the proof.     ❑

Remark. Moreover the following result is well known: The group of
equivalence classes of complex line bundles over a manifold M is isomorphic
to H2(M, Z); the isomorphism is given by the first Chern class. If in addition
there is a hermitian structure and a connection on the LB, its curvature is the
natural image of this Chern class in H2(M, R). Note that the first Chern class
(as an element of H2(M, Z)) is determined by the curvature only up to torsion
elements.

With the question of existence of a HLBC with curvature  b  settled the first
step towards the construction of the Hilbert space of states for a quantum
mechanical particle on the manifold M in the magnetic field b is accomplished.
Now we adress two questions of uniqueness:

Given a manifold M and a real closed integral two form b; firstly: how many
non equivalent possibilities do we have to construct a HLBC with curvature b;
secondly: given a HLB which admits a connection with curvature b, what is the
classification of the non equivalent connections with curvature b on this HLB?
We should like to stress that the two questions coincide if the Chern class is
uniquely determined by the curvature b.
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The answer may be stated in the language of cohomology theory [Wo].
Denote by Hk(M, G) the singular cohomology with coefficients in G [G].
Then it holds:

Theorem 2. Given a manifold M and a real closed integral two form b.
The set of equivalence classes of hermitian line bundles with connection and
curvature b is in bijection with H1(M, S 1) .

Theorem 3. Given a HLB over M and a real closed integral two form b.
The set of equivalence classes of connections with curvature  b  is in bijection
with  H1(M, R)/H1 (M, Z).

 Remarks. • From the Aharonov-Bohm effect [A-B] one knows for a particle
in R3\(cylinder):  if one adds a vector potential to d-ia, physics remains
unchanged iff the derivative of the added potential is zero in the configuration
space and its flux through the cylinder is an integral multiple of 2π. In this
sense we may regard Theorem 3 as a description of a generalized Aharonov-
Bohm effect.

• H1(M, S1)  and  H1(M, R)/H1(M, Z)  are not isomorphic in general as one
learns from the example M = RP3:  the exactness of  

1 ∅ Z ∅ R →
exp(i .)

  S1 ∅ 1
entails the exactness of

0 ∅ H1(M, Z) ∅ H1(M, R) ∅ H1(M, S1)  ∅ H2(M, Z) ∅ H2(M, R) ∅ .. .

As an example we consider RP3 (which is not simply connected). It is known
[B-T] that H2(RP3, Z) = Z2  and H2(RP3, R) = 0. It follows that H1(RP3, R)
∅ H1(RP3, S1) is not surjective.

• if  M  is a closed surface in  R3  the integrality condition implies quantization
of the magnetic flux through  M. For the special case  M = S2, and b = const
this is Dirac's famous result on the quantization of the magnetic monopole [D].    
❑

Given an integral magnetic field  b  on  M  the Hamiltonian  H  of the system
is by definition the covariant Laplacian on a HLBC (b, ∇, < ·, · >)  with
curvature  b. This is constructed as follows:
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If  M  is oriented, the Riemannian metric  ( · , · )  and the volume form
ω  induce the Hilbert spaces (L2(b), < , >b ) and (L2 (TC

*M ⊗ b), < , >⊗).  ∇, its
formal adjoint  ∇*  and the Bochner- Laplacian  ∇*∇   are defined on the
smooth sections with compact support.  ∇*∇  is then symmetric and positive.

For an oriented Riemannian manifold  M, a closed real integral two form  b,
and a HLBC (b, ∇, < · , · >)  with curvature  b we make the
Definition. The Hamiltonian of a particle on the configuration space
M  in an integral magnetic field  b  is the Friedrichs extension of the Bochner-
Laplacian   ∇ *∇ .

Remarks. • If  M  is complete, ∇*∇   is essentially selfadjoint by  gener-
alization of a result of [Ch] for the flat Laplacian. Compact Riemannian
manifolds are complete;

• an equivalence of HLBsC defines a unitary mapping  U : L2(b) ∅ L2(b')
with UHU-1 = H'. If  H1(M, S1)  is non trivial, a HLBC is not uniquely (up to
equivalence) determined by the magnetic field b. Therefore the Hamiltonian H
(and physics) is not unique (up to unitary equivalence). Note that this non
uniqueness has nothing to do with domain questions of H (as an operator on
sections of b).

• if  M = Rn  every closed  b   is integral and for  a  with da = b, H  is
represented by  (d-ia)*(d-ia).

2. Schrödinger particle on the torus in a magnetic field

From now on we specify M as the two torus (a manifold with non trivial
H1(M, S1)). Let  Γ 1 R2  be the lattice given by integral combinations of
linearly independent vectors  e1, e2. We consider a particle on the torus M :=
R2/Γ; M  is a compact, therefore complete, oriented manifold with the natural
induced Riemannian structure. Let furthermore a magnetic field be given by a
closed integral two form  b  on  M.

Next we shall show that any Hamiltonian arising as a Bochner-Laplacian is
unitarily equivalent to a selfadjoint realization of  - (∂x1 - i ax1)2 - (∂x2 - i ax2)2
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in  L2(unit cell) with appropriate boundary conditions .This representation is
widely used but we are not aware of a reference.

M  may be represented as a rectangle with opposite sides identified; this we
represent for the sake of notation as the image of the unit square (with
opposite sides identified) under a map E:

E:

Fig. 1: The map E.

Let  {Vj:=EUj}j∈{1,...,4}  be the contractible cover of  M defined by

U1          U2        U3    U4

Fig. 2: A contractible cover.

Here the drawn lines represent the points in  M \Vj.

Let  {(Vj, ψj, aj)}  be a trivialization of  (b, ∇, < · , · >) with transition functions
cjk and the ψ j be chosen normalized, e.g.:  <ψj,ψj>

≡ 1 in Vj. A section  σ ∈ S(b)  is
determined by a function  ϕ1 ∈ C∞(V1)  via  σ(x) = ψ1(x, ϕ1(x)), (x ∈ V1); the
following holds:

Propositon 4. Given  (b, ∇, < · , · >) over M.

(i) The operation

σ ∅ ϕ1 (σ ∈ S(b))

has a unique continuation to a unitary

U : L2(b) ∅ L2(V1) .

(ii) Define the euclidean components of a1 as   ax1,  ax2.  and h  the closure
of the essentially selfadjoint  operator
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- (∂x1 - i ax1)2 - (∂x2 - i ax2)2

defined on functions in  C∞(V1) ↔  C2(V1)    which satisfy the boundary
conditions

(∂n - ia(n))α ϕ(Ε(1, q)) = c12(Ε(1, q)) c21(E(0, q))(∂n - ia(n))α ϕ(E(0, q))

(∂n - ia(n))αϕ(Ε(p, 1)) = c13(E(p, 1))c31(Ε(p, 0))(∂n - ia(n))αϕ(Ε(p, 0))

for  α [ {0, 1},  p, q [ [0, 1];

where n denotes the normal vectorfield on the boundary of V , ∂n the normal
derivative.

Then it  holds for the Hamiltonian  H (the Bochner Laplacian ):

UHU-1 = h  .

Proof. The boundary conditions follow from

 σ(x) = ψ2(x, ϕ2(x)) = ψ1(x, ϕ1(x))   (x ∈ V1 ↔ V2) .

c21ϕ1(E(1, q)) = ϕ2(E(1, q)) = ϕ2(E(0, q)) = c21ϕ1(E(0, q))

and the periodicity of a2 in the p-variable.     ❑

Remark. Changing the gauge of  (b, ∇, < · , · >)  (which means:
changing ψj and and aj ) leads to an operator on  L2(V1)  which is unitarily
equivalent to h. The passage to an equivalent  (b´, ∇´, < · , · >´) has the same
effect .

3. Bloch analysis; Summation over all Connections
Consider a smooth real valued function B οn R2 which is periodic on the
lattice  Γ, the two-form  b := B dx13dx2which is induced by the natural volume
and a vector potential  a with da = b.Then the Bochner Laplacian on the trivial
bundle R2 ∞ C with connection and curvature b is equivalent to the closure H
of the essentially selfadjoint operator ∑

j
(Dxj - axj)2   on C0

∞(R2) ( Dxj := -i ∂xj

).
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We now present our main result. We shall show that H may be represented as
summation of Bochner Laplacians over the family of inequivalent HLBsC and
curvature b over the Torus  R2/Γ; or, equivalently, over all connections with
curvature b on a fixed HLB.

To do this, we employ ideas from Bloch analysis and the theory developed in
sections 1, 2.

By Bloch analysis we mean the reduction of H to the eigenspaces of the
abelian group of magnetic translations which commutes with H. This group
was introduced by Zak [Z] (for the case B = const) . It is defined as follows:

Denote the fundamental cell of Γ by

C := {x∈ R2; x = <x1, x2> = pe1 + qe2  (p, q ∈ [0, 1))} = E ([0, 1)2),

divide the function B in its constant and oscillating parts B = Bc + Bosc where
Bc := 

1
volC⌡

⌠

   C
  b , split b = bc + bosc in the obvious way, and choose the gauge a

:= ac + aosc  with ac(x1, x2) := Bc/2 (x1dx2- x2dx1) ,  aosc(x + m) = aosc(x),
daosc = bosc. Then T(m) is defined for  m ∈ Γ  as an operator on  L2(R2)  by

T(m) ψ(x) := e-iac(x)(m) ψ(x - m)       ψ ∈ C0
∞(R2)

(where m as usual is identified with the constant vector field m(x) = m).

These magnetic translations fulfill the Weyl relations:

T(m) T(”) = e-ibc/2(m,” ) T(m + ”)   (m, ” ∈ Γ);

of course: bc (m,l) = Bc(m1l2 -  m2l1).

For m ∈ Γ, ψ ∈ C0
∞(R2) it holds:

[T(m), (∂x1 - i ax1)] ψ(x)

= i e-iac(x)(m) ψ(x-m) ( ax1
(x) - ax1

(x-m) + ∂x1
ac(x)(m))

= i e-iac(x)(m) ψ(x-m) ( acx1
(x) - acx1

(x-m) + ∂x1
ac(x)(m))

= 0 ,
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[T(m), (∂x2
 - i ax2

)] = 0.

It follows:
[T(m), H] = 0  on  C0

∞(R2) .

Remark. T(m) = e-i(m, D+ac)    is the magnetic translation generated by

D + ac . The oscillating part of a plays no role.

From now on we shall assume that the magnetic flux is quantized:

Φ := Bc 6 volC ∈ 2πZ ;

the group is then abelian and it is natural to split  L2(R2)  into the Eigenspaces
of  {Τ(m)}:

For  ψ ∈ C0
∞(R2), k ∈ R2, x ∈ R2 we define (with km = k1m1 +  k2m2):

Uψ(k, x) := e-ikm∑
m∈Γ

e-im1m2Φ/2  T(m) ψ(x) ;

it holds for  m ∈ Γ, k ∈ R2 :

T(m) Uψ(k, x) = e+im1m2Φ/2eikm Uψ(k, x) .

So Uψ is determined by its values on R2/Γ* ∞ C (Γ* denotes the 2π  dual
lattice of Γ).We will regard Uψ as a function on this domain.

We then have

Theorem 5. U  extends to an isomorphism

U : L2(R2) ∅ L2(C) dk2

|R 2/Γ*|

R 2/Γ*
⊕

  .

Proof. For  ψ ∈ C0
∞(R2)  the function

ψ(x, m) := e-iac(x)(m) e-im1m2Φ/2 ψ(x - m)

is in ”2(Γ)  for  x ∈ C, and so by Plancherel's theorem:
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 dk2

|R 2/Γ*|

R 2/Γ*
⊕

 |Uψ(k, x)|2 = ||ψ (x,  ·  )||” 2(Γ)
2

 .

Now | |Uψ||⊕
2  = dx2| |ψ (x, · )||” 2

2  

C

= ∑
m∈Γ

ψ(x-m)2 = ||ψ||2

C

this proves injectivity.

Now we give explicitly the adjoint  U* :   For ϕ ∈  
⊗

L2(C) dk2  define

ϕ (x, m) := 

R 2/Γ*

eikm e-iac(x)(m) e-im1m2Φ/2  ϕ(k, x) dk2

|R 2/Γ*|
    (x ∈ C, m ∈ Γ)

and
U* ϕ(x) := ϕ (x - [x], - [x])       (x ∈ R2)

( [x] denotes the integral part of x with respect to the basis {e1, e2}) .

Then  U*ϕ ∈ L2 (R2)  and  (U*ϕ,  ψ)L2 = (ϕ, Uψ)⊕ .      ❑

In order to describe the corresponding decomposition of  H  we introduce for
k ∈ R 2/Γ*  the operator

H(k) := ∑
j

(Dxj - axj)2

defined on the core

B(H(k)) = {ϕ ∈  C∞(C) ↔ C2(C); [(-i∂n - a(n))]α ϕ(x - m)

  = eikm e-iac(x)(m) eim1m2Φ/2 [(-i∂n - a(n))]α ϕ(x)

⇔  [(-i∂n - a(n))]α T(m)ϕ = eikm eim1m2Φ/2[(-i∂n - a(n))]α ϕ

for  m = <m1, m2> ∈ Γ,  α ∈ {0, 1}, x ∈ ∂C  s.t.  x + m ∈ ∂C} .

Then it holds:

Theorem 6. UHU -1 = H(k) dk2

|R 2/Γ*|

R 2/Γ*
⊕

Proof. It is sufficient to show the equality
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UH = 

⊕

H(k) dk2

|R 2/Γ*|
 U

on the core  C0
∞(R2) of H.

Firstly we remark that for ψ ∈ C0
∞(R2)  it holds that Uψ ∈ 

⊕

B(H(k)) dk2.

We have already verified that  Uψ(k, · )  is an eigenfunction of the group
{T(m)}  so the required boundary conditions hold for  Uψ; the fact that
{T(m)}  commutes with  (-id-a)  implies their validity for the covariant
derivatives. Secondly as  H(k) commutes with  {T(m)}  we have:

⊕

H(k) dk2 Uψ   =    

⊕

(Dj - aj)2 ∑
j

eikm eiΦm1m2/2∑
m

T(m)ψ  dk2

        =    

⊕

eikm eiΦm1m2/2∑
m

T(m) (Dj - aj)2∑
j

ψ  dk2

        =    UHψ ❑

The Bloch analysis may be regarded from a geometrical point of view; this is
based on the observation that for k ∈  R2/Γ*  there exists a HLBC over the
torus  R2/Γ such that H(k) is unitarily equivalent to its Bochner Laplacian. We
shall construct such a HLBC for k = 0, after that we shall prove the assertion
for all k.

Choose a HLBC which is defined by the following data in the p,q coordinates
(we give only the parts which are relevant for our purpose):

a1 := ac + aosc   ,        E*a2(p, q) := - Φ q dp + E*aosc   ,

E*a3(p,q) := Φ p dq+ E*aosc ; with E*a1(p, q) := - Φ/2 (p dq - q dp):

c12 (E(p, q )) := ei Φ/2 pq   ,        c13 (E(p, q )) := e - i Φ/2 pq .

By Proposition 4 the Bochner Laplacian on this HLBC is unitarily equivalent
to the closure of  ∑

j
(Dxj - axj)2  defined on the   C∞(V1) ↔ C2(V1) functions

which satisfy the boundary conditions:



- 13 -

(∂n - ia(n))α ϕ(Ε((0, q) + (1, q)))

= c12(Ε(1, q)) c21(E(0, q))(∂n - ia(n))α ϕ(E(0, q))

= exp(i Φ/2 q) (∂n - ia(n))α ϕ(E(0, q))

(∂n - ia(n))αϕ(Ε((p, 0) + (0, 1))) 

= exp(-i Φ/2 p)(∂n - ia(n))αϕ(Ε(p, 0))

for  α∈ {0, 1},  p, q ∈ [0, 1];

but this operator is H(0)!

So for the connection on this bundle it holds:

∇*∇ ≅ H(0) .

For general k we have

Theorem 7. For  k ∈ R2/Γ* there exists one and only one (equivalence
class of) HLBsC such that

∇*∇ ≅ H(k)

Proof. By Theorem 2 the set of all (equivalence classes of) HLBsC is
isomorphic to H1(R2/Γ, S1). We now construct an explicit bijection of this
space to R2/Γ* , which makes the role of the boundary conditions transparent.

Denote by Hk({Uj}, G) the k-th Cˇ ech cohomology group relative to  {Uj}
with coefficients in the locally constant functions with values in the abelian
group G We make use of the fact that  Hk({Uj}, G)  is isomorphic to  Hk(M,
G), the singular cohomology with coefficients in G [G]. For the machinery the
reader might refer to [W], [G], [B-T].

An element  f ∈ H0(R2/Γ, S1) ≅ H0({Uj}, S1)  is characterized by

f = (f1, f2, f3, f4)

where  fj are constant functions on  Uj .
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An element  f ∈ H1(R2/Γ, S1) ≅ H1({Uj}, S1)  is characterized by

f = (f12, f13, f14, f23, f24, f34)

where  fjk are locally constant functions on  Uj ↔ Uk with  fjk fkl flj = 1 on

Uj ↔ Uk↔ Ul . They are determined by their values on the connected compo-
nents of  Uj ↔ Uk.

These regions can be visualized as follows (c.f. the graphic in section 2):

.
       U12                U13            U14 = U23              U24                   U34

Fig. 3: Intersections of the cover.

For example f14 is determined by the tuple (ur, u”, d”, dr)14 ∈ (S1)4.

The coboundary operator

δ : H0 ({Uj}, S1) ∅ H1({Uj}, S1)

is defined by

δ((f1, f2, f3, f4))jk = fj fk
-1 .

We claim that f may be represented in the following way:

   f = ((”, r)12, (u, d)13, (ur, u”, d”, dr)14, ... )

     = ((α, 1), (β, 1), (β, βα, α, 1), (β, βα-1, α-1, 1), (β, 1), (α, 1))     (1)

· δ ((1, γ, η, ζ))

with

α := ”12r21 ,  β := u13d31 ,  γ := r21 ,  η := d31 ,  ζ := dr41
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(where for example dr41 is the inverse of the value of f14 in the lower right
component of U14).

In order to indicate how this is derived, we check this identity on f23 .

δ ((1, γ, η, ζ))23 = γη-1(1,1,1,1) = dr23(1,1,1,1).

Using the cocycle coditions one gets

(β, βα-1, α-1, 1) δ ((1, γ, η, ζ))23

= (u13d31dr23, u13d31l21r12dr23, l21r12dr23, dr23)

= (u13r21, u13d31l21d13, l21d13, dr23)

= (ur23, ul23, dl23, dr23) = f23.

Define for  α,β ∈ S1  the  H1(R2/Γ, S1)  element

f(α,β) := ((α,1),(β,1),(β, βα, α,1),(β, βα-1, α-1,1),(β,1),(α,1)).

Using (1) one obtains: The map

R2/Γ*  ∅  H1(R2/Γ, S1)

k  ∅ f(e-ike1, eike2 )

is bijective.

From the description of the non-equivalent HLBsC given by Theorem 2 we
can now conclude:

For every k ∈ R2/Γ* there exists a unique (equivalence classes of) HLBsC
determined by the data:

(ci j(k), aj) := (fi j(e-ike1, eike2 ) ci j, aj)

where  (ci j, aj)  are the data chosen above.

Fix now k in R2/Γ*. From the structure of f(α,β) and an argumentation anal-
ogous to the one made above for the k = 0 case, one sees that  ∇*∇  on the
HLBC determined by k is unitarily equivalent to  ∑

j
(Dxj - axj)2 with the jump
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conditions: eike1ei Φ/2 q in the e1 direction and eike2e-i Φ/2 p in the e2 direction.
This operator is H(k).

We now give an interpretation of Bloch analysis in geometric language:

Corollary 9. Given a real closed two-form  b  on  R2  which projects to
an integral two-form  b   on  R2/Γ.

Then the direct integral of the Bochner Laplacians over all non-equivalent
HLBC over the torus with curvature  b   is unitarily equivalent to the unique
Bochner Laplacian on the HLBC with curvature  b  on its universal cover.

For the Torus one may adopt a slightly different  point of view:

Fix a HLB so that a connection with curvature b exists (i.e.: the chern class of
the bundle equals the (cohomology class of) b). By Theorem 3 the set of all
(equivalence classes of) connections is H1(R2/Γ, R)/H1(R2/Γ , Z ). By
considerations analogous to those which led to Theorem 7 one obtains:

R2/Γ* ≅ H1(R2/Γ, R)/H1(R2/Γ, Z) ≅ H1(R2/Γ, S1)

and for every k in R2/Γ* there is exactly one connection (up to equivalence)
with ∇*∇ ≅ H(k).

So we have:

Given a real closed two-form  b  on  R2  which projects to an integral two-
form  b   on  R2/Γ.

Then the direct integral of the Bochner Laplacians over all non-equivalent
connections on a suitable HLB over the torus with curvature  b   is unitarily
equivalent to the unique Bochner Laplacian on the HLBC with curvature  b
on its universal cover.

Again we remark that for manifolds with torsion like RP3 these two points of
view are not equivalent.

To summarize the content of section 3:
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We carried out a Bloch analysis for particles in a periodic magnetic field and
gave a geometric reinterpretation in term of a sum over all connections.
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several useful remarks, D. Ferus for pointing out an error in a preliminary
version.

References

[A] O. Alvarez, Topological Quantization and Cohomology, Commun.
Math. Phys. 100 (1985), 279 - 309.

[A-B] Y. Aharonov and D. Bohm, Significance of Electromagnetic
Potentials in the Quantum Theory, Phys. Rev.  115  (1959), 458.

[A-S-Y] J.E. Avron and R.Seiler and L.G.Yaffe, Adiabatic Theorems and
Applications to the Quantum Hall Effect, Commun. Math. Phys.
110 (1987), 33.

[A-K-P-S] Avron, J.E., Klein, M., Pnueli, A., Sadun, L., Hall conductance and
adiabatic charge transport of leaky tori, Phys. Rev. Lett. 69(1)
(1992), 128-131.

[AdPW] S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization of
Chern-Simons Gauge Theory, J. of Diff. Geometry   33 (1991),
787-902.

[B-T] R.Bott and L.W.Tu, Differential Forms in Algebraic Geometry,
New York (1982).

[Ch] P.R.Chernoff, Essential Self - Adjointness of Powers of Genera-
tors of Hyperbolic Equations, J. of Func. Anal.  12 (1973), 401.

[D] P.A.M. Dirac, Quantised Singularities in the Elektromagnetic
Field, Proc. R. Soc. London   A133 (1931), 60.

[G] R.Godement, Topologie algebrique et theorie des faisceaux, Paris
(1964).



- 18 -

[K] B.Kostant, Quantization and Unitary Representations, Lect. Notes
in Math. Vol. 170, Berlin (1970).

[Ku] R. Kuwabara, Spectrum of the Laplacian on vector bundles over
C2π manifolds, J. of Diff Geometry   27 (1988), 241 - 258.

[TKNN] D.J.Thouless, M.P.Kohmoto, M.P.Nightingale, M.den Nijs,
Quantized Hall conductance in a two dimensional periodic pot-
ential Phys. Rev. Lett.  49 (1982), 405.

[S] N.Steenrod, Topology of fibre bundles, Princeton (1951).

[W] A.Weil, Sur les theoremes de de Rham Comm. Math. Helv.  26
(1952), 119.

[Wo] N.Woodhouse, Geometric Quantization, Oxford (1980).

[W-Y] T.T.Wu and C.N.Yang, Concept of nonintegrable phase factors
and global formulation of gauge fields, Phys. Rev. D  12 (1975),
3845.

[Z] J.Zak, Dynamics of Electrons in Solids in External Fields
Phys.Rev. 168  (1968), 686.


